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Abstract

A wide range of insecticide resistance profiles has been reported across Bolivian domestic and 

sylvatic populations of Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae), including some 

with levels proven to be a threat for vector control. In this work, the insecticide profile of domestic 

T. infestans was studied with standardized toxicological bioassays, in an area that has not 

undergone consistent vector control. F1 first-instarnymphs hatched in laboratory from bugs 

captured in three communities from the Santa Cruz Department were evaluated with different 

insecticides. Moreover, the enzymatic activity of esterases and cytochrome P450 monooxygenases 

was measured in individual insects to evaluate the possible mechanism of metabolic resistance to 

pyrethroids. In addition, the DNA sequence of sodium channel gene (kdr) was screened for two 

point mutations associated with pyrethroid resistance previously reported in T. infestans.

All populations showed reduced susceptibility to deltamethrin and α-cypermethrin, albeit the 

RR50 values varied significantly among them. Increased P450 monooxygenases and permethrate 
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esterases suggest the contribution, as detoxifying mechanisms, to the observed resistance to 

deltamethrin in all studied populations. No individuals presented either mutation associated to 

resistance in the kdr gene. The level of susceptibility to α-cypermethrin, the insecticide used by 

the local vector control program, falls within an acceptable range to continue its use in these 

populations. However, the observed RR50 values evidence the possibility of selection for 

resistance to pyrethroids, especially to deltamethrin. Consequently, the use of pyrethroid 

insecticides should be closely monitored in these communities, which should be kept under 

entomological surveillance and sustained interventions.
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Chagas disease is an endemic parasitic infection that affects approximately 6 million people 

in the world, while 70 million are at risk of contracting the infection in 21 Latin American 

countries (WHO 2015). Trypanosoma cruzi, the etiological agent, is transmitted primarily by 

hematophagous triatomine vectors, of which Triatoma infestans (Klug 1834) (Hemiptera: 

Reduviidae, Triatominae) is the most important in the southern countries of Latin America 

(Schofield et al. 2006, Gürtler et al. 2008). The broad vectorial capacity of T. infestans 
results from the combination of its high Tr. cruzi transmission rate, its wide geographic 

distribution, and its ability to colonize human households and feed on humans and domestic 

animals (Gürtler et al. 1997, Gürtler et al. 2005, Noireau et al. 2009, Noireau 2009).

Bolivia has the highest Tr. cruzi infection prevalence and rate of on-going vector 

transmission in the Americas (WHO 2015). In a country where 55% of its territory 

(~600km2) is considered endemic for Chagas, the impact of this disease on the population is 

remarkable. Over 600,000 people are estimated to be infected with Tr. cruzi, representing the 

6% of its population, and is currently the leading country where transmission occurs, 

accounting for over 92% of new cases in the southern cone region (WHO 2015). 

Approximately 3.5 million people (30% of the population) are estimated to be at risk of 

infection (Medrano-Mercado et al. 2008), over 600,000 people are estimated to be infected, 

and 45,000 yearly deaths are attributed to the disease (WHO 2015). A study carried out in a 

Santa Cruz hospital showed that nearly 60% of symptomatic congestive heart failure cases 

were attributed to Chagas disease (Hidron et al. 2010). The Tr. cruzi infection prevalence in 

pregnant women was 19% in the city of Santa Cruz and 47% in Camiri, a provincial capital 

in the Bolivian Chaco (Kaplinski et al. 2015). In the Bolivian Chaco, people continue to live 

in infested houses, and in some villages, 80–90% of adults test positive for Chagas disease 

(Chippaux et al. 2008, Samuels et al. 2013).

Since the 1980s, triatomine control has been primarily based on the use of pyrethroid 

residual insecticides that commonly have deltamethrin, lambda-cyhalothrin, and α-

cypermethrin as active ingredients (Morel 1999). Pyrethroids are currently the main tool for 

vector control because of their high efficacy and residual activity, together with low risk of 

environmental contamination and lower health risks associated to them (Pinchin et al. 1980, 

Zerba 1997, Gürtler et al. 2004, Cécere et al. 2006).
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Triatoma infestans is the target of a regional vector control program, the Southern Cone 

Initiative (SCI), an intergovernmental agreement that aims to eliminate vector transmission 

by the massive spraying of households with residual pyrethroid insecticides. The intention of 

this program is to eliminate domestic populations of the vector (Dias 2007). By 2010, SCI 

achievements included the interruption of vectorial transmission of Tr. cruzi infection by 

Triatoma infestans in Uruguay in 1997, in Chile in 1999, in Brazil in 2006, in the Oriental 

region of Paraguay in 2008, and in the Peruvian provinces of Tacna and Moquegua in 2009 

and 2010, respectively (Dias et al. 2002, Schofield et al. 2006, WHO 2015). In addition, 19 

out of 21 involved Latin American countries achieved 100% screening of donated blood. In 

Uruguay and Chile, where transmission by the principal vector was interrupted in 1997 and 

1999, respectively, and where there is no secondary vector of epidemiological significance, 

the risk of vector transmission is now considered negligible.

However, the Gran Chaco region, a 1.3-million-km2 ecological zone shared among Bolivia, 

Argentina, and Paraguay, is an exception to the success achieved in other regions (Dias et al. 

2002, Silveira 2002, Gürtler et al. 2007). Several areas of the Gran Chaco have been targeted 

with intensive vector control efforts without success (Gürtler et al. 2007, Mougabure-Cueto 

and Picollo 2015, Pessoa et al. 2015). Abundant populations of T. infestans live in 

peridomestic structures of the Gran Chaco rural houses, habitats where the pyrethroid 

formulations showed lower efficacy probably due to no persistent residual effect outdoors 

(Gürtler et al. 2004, Cécere et al. 2006). The recommended strategy of repeating an 

insecticide application every six months is usually not met in these areas for a number of 

reasons, including infrastructure, material, and human resources availability, among the 

main operational problems. In this context, residual populations of triatomines are likely to 

expand and eventually re-establish vectorial transmission of Tr. cruzi (Gürtler 2009). Reports 

of rapid re-infestation after spray campaigns, emergence of insecticide resistance, and the 

presence of sylvatic T. infestans populations challenge the strategy of the SCI in this region 

(Schofield and Dias 1999, Noireau et al. 2000, Rojas de Arias et al. 2004, Lardeux et al. 

2010, Waleckx et al. 2012). The emergence of resistant triatomine populations after 

chemical treatments has been demonstrated, including several reports of resistance to 

pyrethroid insecticides from populations in the Gran Chaco region (Vassena et al. 2000, 

Picollo et al. 2005, Santo Orihuela et al. 2008, Toloza et al. 2008, Germano et al. 2010, 

Lardeux et al. 2010, Santo-Orihuela and Picollo 2011, Depickère et al. 2012).

The present work was carried out as part of a comprehensive epidemiological study in an 

area of the Bolivian Chaco with extremely high Chagas prevalence, cardiac disease burden, 

and serologic evidence of recent transmission and persistent domestic infestation (Samuels 

et al. 2013, Clark et al. 2015, Kaplinski et al. 2015; Fernandez et al. 2015). Our main 

objective was to evaluate the susceptibility of T. infestans populations from the Eiti region 

(Santa Cruz, Bolivia) to pyrethroid and nonpyrethroid insecticides.

In addition, we sought to establish the mechanisms responsible for the reduced susceptibility 

of these vector populations by evaluating the enzymes involved in deltamethrin degradation. 

In this sense, we analyzed the contribution of P450 monooxygenases and pyrethroid 

esterases as well as the possible presence of two mutations in the voltage-gated sodium 
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channel (kdr) gene associated with pyrethroid knockdown resistance (kdr) in T. infestans 
(Fabro et al. 2012, Capriotti et al. 2014).

Materials and Methods

Study Area and Previous Control History

The Eiti health sector was selected for intervention based on data provided by the Bolivian 

Ministry of Health Chagas control program, which reported high likelihood of active Tr. 
cruzi transmission. The Eiti health sector (19° 43′52.4994″ S, 63° 23′9.4812′ W; 800 m 

a.s.l. [meters above mean sea level]) is a catchment area composed of 18 villages with a total 

estimated population of 8,320 persons located in Gutierrez Municipality, Cordillera 

Province, Santa Cruz Department in Bolivia (Samuels et al. 2013).

The area had been sprayed with DDT and dieldrin (organochloride insecticides) by the 

National Malaria Eradication Service in the late 1950s and early 1960s. In the 1980s, HCH 

(γ-hexachlorocyclohexane) was used in the region, and subsequently, during the 1990s, the 

insecticide of choice was switched to pyrethroids (λ-cyhalothrin WP 12.5% and 

deltamethrin SC 2.5 and 5%). Beginning in 2002, α-acypermethrin SC 20% was the 

insecticide utilized in the region by the national control program (Alarico et al. 2010). 

According to the local vector control program records, the first systematic spray campaign 

targeting domestic T. infestans in these communities began in early 2000. Blanket-spraying 

with α-cypermethrin 20% was conducted in 2000 and 2003. From 2005 to 2009, focal 

spraying of infested houses was conducted by the national entomological control program of 

the Department of Health Services (SEDES) Chagas program. Moreover, beginning in 1997, 

the company Inesfly (Dias and Jemmio 2008) participated in a series of projects involving 

house improvement and painting with the microencapsulated formulation (Inesfly 5A IGR) 

in areas near Camiri (Bolivia) and La Rioja and Santiago del Estero (Argentina) (Amelotti et 

al. 2009, Alarico et al. 2010). This initiative included sectors of two of the communities 

evaluated in our work (El Cruce and Itapicoe, Fig. 1), and thus, a small number of houses in 

our study area were improved or rebuilt, and treated with the insecticide paint sometime 

from 1998 to 2009. No systematic spraying against triatomines was performed in the area 

from 2003 to the time of this study. Since then, individual houses were treated by 

community members if triatomines were detected within the houses and insecticide was 

available, but no official spraying programs were carried out (Samuels et al. 2013).

Framed within a wider epidemiological study, we carried out a baseline entomological 

evaluation and a vector control intervention in seven neighboring communities (Fig. 1) 

chosen nonrandomly based on size, relative lack of recent interventions, and proximity to 

our laboratory, as previously described (Samuels et al. 2013). During the entomological 

evaluation that took place in November-December 2011, 508 houses from the seven 

communities were evaluated for triatomine insects. Local villagers were trained by our 

personnel and a SEDES technician to perform timed manual collections within the houses 

and main peridomestic structures. No dislodging agent was used.

Over 40% (n = 205) of the houses were infested and a total of 1,022 T. infestans were 

captured in either domiciles or peridomestic structures (i.e., storage rooms). About 45% of 
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the captured insects were screened by microscopy at 40× in search for mobile 

trypanosomatids, yielding a Tr. cruzi prevalence of 39.7% (n = 182). At the end of our 

entomological survey in December 2011, a massive blanket-spraying using α-cypermethrin 

20% provided by SEDES was conducted by local habitants supervised by our team.

Insects

For this study, T. infestans captured during the entomologic surveillances in several houses 

of the communities of Guasuanti (19° 47′10.08″ S 63° 25′29.88″ W; 1,022 m a.s.l.), 

Itapicoe (19° 46′0.78″ S 63° 28′56.58″ W; 1,127 m a.s.l.), and El Cruce (19° 44′51.78″ S 

63° 26′45.42″ W; 1,086 m a.s.l.) were used. A pool of live insects of different 

developmental stages from each community was sent to CIPEIN and bred in the laboratory. 

All colonies were maintained at 28 ± 1°C, 50% RH, and a photoperiod of 12:12 (L:D) h. 

Insects were fed on pigeons on a weekly basis. Rearing conditions are described in detail 

elsewhere (Picollo et al. 1976, Nuñez and Segura 1987).

The F1 generation obtained from the field specimens (F0) were used to conduct the 

bioassays. For all the experiments, laboratory-reared unfed first instars (5–7-d-old, mean 

weight 1.3 ± 0.2 mg) were tested following the World Health Organization protocol (WHO 

1994).

The susceptible reference strain of T. infestans used to determine the baseline was the NFS 

strain, from Santiago del Estero (Argentina), which has been reared in laboratory without 

insecticide exposure since December 2004 (Roca-Acevedo et al. 2011). This strain is derived 

from a domestic population with no exposure to insecticides and collected in an area where 

insects have successfully been controlled with deltamethrin.

Bioassays

Bioassays were performed according to the WHO protocol (1994). Briefly, T. infestans 
nymphs received a topical application of 0.2 µl of acetone solution of insecticide on the 

dorsal abdomen, using a 10 µl Hamilton (Nevada, USA) syringe with automatic repeating 

dispenser. The control group received pure acetone. The first step is carried out as a 

screening assay to determine doses of insecticide, discarding doses that cause 0 and 100% of 

mortality. Initially, four doses of insecticide were assayed with a dilution factor of 1 to 10 

between doses. Later, three replicates of at least four more insecticide doses in a range that 

produced between 10 and 90% mortality were conducted. Table 1 shows the number of bugs 

(N) used in each bioassay.

The concentrations evaluated ranged from 10−4 to 12−2 mg/ml for all insecticides. Dosages 

were expressed as nanograms (ng) of active ingredient per insect (Table 1).

Treated insects were kept inside a plastic glass with folded paper at 28–30 °C and 50–70% 

RH. Mortality was evaluated after 24 h by placing the insects at the center of a circular filter 

paper of diameter 11 cm; those nymphs able to walk to the border of the paper were 

considered alive (WHO 1994). Mortality data were corrected to adjust for variability and 

natural mortality of the controls (Abbott 1987).

Santo-Orihuela et al. Page 5

J Med Entomol. Author manuscript; available in PMC 2017 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The insecticides evaluated in the bioassays were technical-grade deltamethrin (99.0%), 

fenitrothion (99.0%), fipronil (97.5%), and α-cypermethrin (97.9%), all from Ehrestorfer 

(Augsburg, Germany), and the synergist piperonyl butoxide (PBO) 90.3% (ICN, USA). 

Serial dilutions were prepared with analytical-grade acetone from Sintorgan SACIF (Buenos 

Aires, Argentina).

Statistical Analysis

To estimate the lethal dose (in nanograms of insecticide per insect) that kills 50% of treated 

individuals (LD50), mortality data from each T. infestans population against each insecticide 

evaluated were pooled and analyzed based on probit analysis (Litchfield and Wilcoxon 

1949) with POLO Plus software (LeOra Software 2002 Berkeley, California, USA). 

Resistant ratios (RR50s) and 95% confidence intervals (CI) of each population were 

calculated by comparison of the dose–response curves between studied populations and the 

susceptible reference strain NFS (Robertson et al. 2007).

Populations were considered statistically different from the reference strain if the LDR 95% 

CI did not include the number 1.0 (Robertson et al. 2007, Russell 2007).

Evaluation of Deltamethrin Susceptibility After Pre-Treatment With the Synergist PBO

PBO has been extensively used as a general monooxygenase inhibitor and as a synergist for 

pyrethroid and other insecticides (Georghiou and Mellon 1983). Synergists act by blocking 

metabolic pathways that would otherwise break down pesticides, thus restoring 

susceptibility to the insecticide. When the treatment with PBO causes reversal from 

resistance to susceptibility, an oxidase metabolic pathway is likely involved in the pyrethroid 

resistance of that given population.

To determine whether the presence of metabolic resistance to deltamethrin in these 

populations is mediated by P450 monooxygenases, an assay exposing insects to PBO before 

a bioassay was carried out (Vassena et al. 2000). Briefly, the exposition was performed in 

circular glass containers, whose floor had an area of 95 cm2 and were 6-cm-high. The 

container bases were impregnated with 1.5 ml of solution of 3.17 mg/ml of PBO in acetone. 

After acetone evaporation (1 h), the final concentration of PBO in the base of the containers 

was 500 mg/m2. The containers used as control were only impregnated with acetone. Three 

replicates of 10 first-instar nymphs per container were exposed to PBO for 60 min. Thirty 

minutes later, 0.2 µl of deltamethrin diagnostic dose (DD) was applied topically; control 

insects were treated with the 0.2 µl of acetone. Nymphs were kept in the same post-treatment 

conditions as described for the evaluation of insecticide activity and mortality evaluated after 

24 h.

The DD assay determined whether the insect reference population (NFS) was fully 

susceptible to deltamethrin. The DD was defined as the 99% lethal dose (LD99) for 

deltamethrin of a reference susceptible insect population (2 ng/insect) and was chosen for 

the topical application of first nymphs from field samples after PBO treatment (WHO 1994, 

Picollo et al. 2005, Gurevitz et al. 2012).
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Pyrethroid Esterase Activity

Enzymatic activity was evaluated by the hydrolysis of 7-coumaryl permethrate (7-CP), a 

fluorescent substrate synthesized at CIPEIN, used to determine pyrethroid hydrolysis 

activity on individual insects (Santo Orihuela et al. 2006, 2008, 2013). The enzymatic 

hydrolysis of 7-CP produces 7-OHC (7-hydroxicoumarin), and the concentration of 7-OHC 

is easily monitored by measuring fluorescence. Live first-instar nymphs with the same 

characteristics as those used in bioassays (Table 2) were homogenized in 220 µl of 

phosphate buffer (0.05 M), pH 7.2, using a plastic mortar and pestle. The whole procedure 

was carried out on ice to avoid enzymatic degradation. The reaction was initiated by adding 

10 µl of 7-CP (3.5mM, 2-methoxy ethanol) to 190 µl of each homogenate and posterior 

incubation at 25 °C for 33 min, at pH 7.2. Assays were carried out in black, 96-well, 

polystyrene, flat-bottomed microtiter plates (PerkinElmer Life and Analytical Sciences) at 

25 °C. Fluorescence was measured with an excitation wavelength of 390 nm and an 

emission wavelength of 440 nm using a Fluoroskan Ascent Microplate Fluorometer 

(Thermo Scientific, Helsinki, Finland). Activity was measured every 3 min for 30 min. The 

relative fluorescence units (RFU) were corrected for background hydrolysis and nonspecific 

fluorescence of substrate and transformed to picomoles per minute (activity units) by using a 

calibration curve per replicate with dilutions of 7-OHC (68.5, 342.69, 685.44, and 1370.8 

total picomoles per well). Results were analyzed with Ascent (Thermo Scientific, Helsinki, 

Finland) and Microsoft Excel 2010 (Microsoft) software.

Cytochrome P450 Monooxygenase Activity

Monooxygenase activity was measured according to the direct fluorometric test developed 

for individual abdomens of T. infestans, using 7-ethoxycoumarin (7-EC, Sigma-Aldrich Co) 

as substrate (De Sousa et al. 1995, González Audino et al. 2004, Picollo et al. 2005). The 

abdomens of living first-instar nymphs (Table 2) were placed individually into wells of a 96-

well microplate containing 100 µl of 0.05 M phosphate buffer, pH 7.2, and 3.5mM 7-EC. 

The reaction was stopped after 4-h incubation at 30 °C by adding 100 µl of glycine buffer 

(10 − 4 M), pH 10.4. To precipitate the abdomens in the wells, microplates were centrifuged 

at 2,000 g for 30 s in a refrigerated centrifuge for microplates (4237 R, ALC International 

SRL, Cologna Monzese, Italy) before and after the incubation of the enzymatic reaction at 

30 °C. For each population, similar wells receiving glycine buffer before incubation were 

used as blanks. The hydrolysis of 7-EC produced 7-OHC, whose fluorescence was 

monitored with an excitation wavelength of 390 nm and an emission wavelength of 440 nm 

measured in a Fluoroskan Ascent Microplate Fluorometer (Thermo Scientific, Helsinki, 

Finland). Assays were conducted in black, 96-well, polystyrene, flat-bottomed microtiter 

plates (Perkin Elmer Life and Analytical Sciences) at 25 °C. Results were analyzed with 

Ascent software (Thermo Scientific, Helsinki, Finland) and Microsoft Excel 2010 

(Microsoft).

Activity values of pyrethroid esterase and P450 monooxygenase of individual nymphs from 

different populations are expressed as picomoles of 7-OHC per minute and per insect 

(pmol/min/i). Analysis of variance, nonparametric Kruskal–Wallis, and Dunn were used to 

compare the values of 7-CP or P450 enzymatic activity per minute and per insect among 

populations using Instat V. 3.01 (GraphPad Software, San Diego, CA, USA).
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Screening for Mutations in the kdr Gene

A fragment of the DNA sequence of the sodium channel gene was amplified and screened 

for two point mutations associated with pyrethroid knockdown resistance (kdr), previously 

reported in T. infestans (Fabro et al. 2012, Capriotti et al. 2014).

Initially, we attempted to use the screening methodology previously published (Fabro et al. 

2012), but we failed to successfully amplify the target region or amplification was not 

reproducible across samples from different populations. We therefore optimized PCR 

conditions and redesigned the primers based on the complete sequences obtained in two 

specimens of our data set that amplified the target region with the original amplification 

protocol. We found a combination of a new primer (Tifw2plm 5′-GAT ATC AAT TAT GGG 

TCG AAC TG-3′) with a reverse primer (Ti rev3= 5′-TTA ACC CGA ACA AGA ATA 

TA-3′) previously published (Fabro et al. 2012, Capriotti et al. 2014) that successfully 

amplified the target region in all populations. Briefly, DNA was purified from each 

individual using the QIAamp DNA purification kit (QIAGEN), following the manufacturer’s 

recommendation for DNA extraction from tissues. PCR amplification reaction was carried 

out with Accustart II PCR superMix (Quanta Bio) in a final volume of 25 µl, using 1 µl of 

each primer at 10 pmol/µl and 3.5 µl of DNA template. Amplification conditions were 

optimized as follows: 95 °C for 5 min; 35 cycles of 95 °C for 30 s, 52 °C for 50 s, and 72 °C 

for 4 min; and a final elongation step at 72 °C for 15 min. The reaction produced a fragment 

of approximately 560 bp containing the two mutational sites of interest. Amplification 

products were checked by electrophoresis on 2% agarose gels stained with Gelred 

(Biotium), and positive samples were purified with MultiscreenPCR plates (Millipore) 

following manufacturer’s standard protocol. Cycle sequence reactions for both forward and 

reverse strains were carried out using the BigDye terminator Cycle sequencing kit v3.1 

(Applied Biosystems), as recommended by the manufacturer, and later purified with the 

BigDye XTerminator purification kit (Applied Biosystems). Direct sequencing of the PCR 

product was obtained with a 3500 ABI automated DNA sequencer (Applied Biosystems). 

Sequences were analyzed with SeqMan Pro 12.2.0 (DNASTAR, Lasergene12) and aligned 

for comparison with Bioedit 7.2.0 (Hall 1999). The genotype of susceptibility/resistance of 

each individual was determined by direct observation of the nucleotide substitutions in the 

target sites (L1014 and L9225).

Results

Toxicity to Insecticides With Different Modes of Action in Bolivian T. infestans First Instar

The LD50 values of the NFS strain for deltamethrin and α-cypermethrin were 0.13 and 

0.075 ng per insect, respectively, and all three populations from Santa Cruz showed 

significantly higher RR50 values. For deltamethrin, significant differences were also 

observed among populations; Guasuanti had the lowest RR50 (2.71), whereas El Cruce and 

Itapicoe exhibited RR50s fivefold higher than NFS (13.90 and 10.62, respectively). 

Moreover, the populations from El Cruce and Itapicoe showed significant albeit minimal, 

reduction of susceptibility to fenitrothion compared with NFS (RR50s 2.36 and 1.65, 

respectively). The RR50 value for insects from Guasuanti was no different from NFS.
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None of the studied populations showed significant differences from the reference strain in 

the susceptibility against fipronil.

Table 1 shows the toxicity of deltamethrin, α-cypermethrin, fenitrothion, and fipronil against 

T. infestans from El Cruce, Itapicoe, and Guasuanti communities and the reference 

susceptible strain NFS.

P450 Activity Evaluated by a Synergist

After PBO exposure, the insects received a topical application of acetone solutions of 

deltamethrin, which resulted in 100% mortality for all three populations (data not shown). 

Field populations of T. infestans pre-treated with PBO showed deltamethrin susceptibility 

similar to that of the susceptible NFS reference strain.

Pyrethroid Esterase and Cytochrome P450 Monooxygenase Activity

All populations exhibited increased 7-CP esterase activity (Table 2) in comparison with the 

reference strain NFS (18.63, 18.51, and 17.91 vs. 11.35 pmol/min/I). In contrast, the values 

of P450 monooxygenase activity were highly variable among populations (Table 2).

Screening for Mutations in the kdr Gene

The sequence analysis of 15, 17, and 7 insects from El Cruce, Itapicoe, and Guasuanti, 

respectively, showed that no individuals presented either of the two mutations in the target 

sites L1014 and L9251 of the sodium channel gene.

Discussion

Pyrethroid resistance occurrence in T. infestans populations may jeopardize the future 

effectiveness of costly vector control actions. In Bolivia, increasing number of reports 

denote that the frequency and geographical spread of resistance are much higher than ever 

thought in the early 1990s when control actions were designed (Lardeux et al. 2010, 

Bustamante Gomez et al. 2014, Bustamante Gomez et al. 2016), which calls for the increase 

in surveillance of the populations targeted for control. In this context, the insecticide 

resistance profile in all three T. infestans populations evaluated from the Santa Cruz 

Department showed lower RR values than populations observed in other areas of Bolivia, 

particularly when compared with domestic populations (Germano et al. 2010, Lardeux et al. 

2010, Depickère et al. 2012, Bustamante Gomez et al. 2015, Gorla et al. 2015, Roca-

Acevedo et al. 2015). However, the toxicological analyses showed significant levels of 

resistance (RR50s) toward deltamethrin and α-cypermethrin in all three communities. 

Moreover, the resistance level of the populations varied among them, showing fivefold 

higher RR50 values for deltamethrin in El Cruce and Itapicoe, compared with Guasuanti.

The RR50s obtained in these populations was not as high as in other areas that had presented 

difficulties for vector control (i.e., RR50: 541.6; Tierras Nuevas, Tarija, Bolivia; Germano et 

al. 2010). However, previous reports on the evaluation of susceptibility of T. infestans 
populations with the same methodology applied here demonstrated that RR50 values as low 

as 7.17 can jeopardize the vector control (Gurevitz et al. 2012).
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Current PAHO guidelines determined that populations with RR50 > 5 (fivefold higher than 

reference populations) should be considered resistant (PAHO 2005, Pessoa et al. 2015). 

Above that RR50 level, PAHO guidelines recommend: 1) to investigate the operational 

failures in the vector control strategies performed by the Chagas Disease Control Program 

(CDCP); 2) to change the insecticide used for CDCP to another with a different mechanism 

of action; and 3) to continue monitoring the susceptibility profile of the altered populations 

through time. On the other hand, PAHO guidelines consider that if a field population 

presents RR50 < 5, the change in susceptibility observed would probably be due to 

individual variability, and thus, control activities could be continued with the same 

insecticide, although the addition of susceptibility monitoring activities is highly 

recommended.

Interestingly, the two populations with increased RR50 (El Cruce and Itapicoe) are located 

in the most easily accessible area of the Eiti health sector (Fig. 1). These two communities 

also presented the most developed conditions with regard to housing and infrastructure. 

Several projects supported by nongovernmental organizations and government initiatives 

were carried out in that accessible area of Eiti, which included building good-quality 

housing that replaced the traditional mud-stick/thatched structures. In addition, in both 

communities, trials were carried out with an insecticide paint or micro-encapsulated 

formulation, and initiatives that included re-building, plastering, and fully painting a few 

local houses (Dias and Jemmio 2008, Alarico et al. 2010). The easily accessible location of 

these two communities could have facilitated various interventions and increased the 

frequency of vector control measures in contrast to more isolated communities like 

Guasuanti. Therefore, it is likely that insect populations from El Cruce and Itapicoe had 

been under higher pyrethroid pressure and, consequently, present increased resistance values 

toward pyrethroids. However, because no systematic vector control actions have been on-

going in this area and no insecticide sprayings had occurred since 2009, RR50 values were 

substantially lower than in other areas of Bolivia, such as Yacuiba (RR = 154.4; Santo 

Orihuela et al. 2008), located approximately 200km away from Eiti. This suggests that the 

selective pressure was insufficient to fix the resistance phenotype in these populations.

The susceptibility profiles against fenitrothion (organophosphate) and fipronil 

(phenylpyrazole) were evaluated to assess the possible action mechanisms against different 

kinds of insecticide compounds. Results showed no resistance to fipronil in any population. 

However, in El Cruce and Itapicoe, significant reduced susceptibility to fenitrothion was 

observed. Biochemical analysis of pyrethroid esterases (7-CP) showed increased activities 

for all Eiti populations, indicating a possible contribution of this enzymatic group to the 

altered susceptibility to pyrethroids and the observed alteration for fenitrothion (B. Brogdon 

Personal communication; Flores et al. 2006).

The contribution of this possible metabolic pathway mediated by esterases has been reported 

previously in T. infestans and other insect species (Hemingway and Ranson 2000; Picollo et 

al. 2005; Santo Orihuela et al. 2006, 2008; Barrios et al. 2010; Santo-Orihuela and Picollo 

2011; Roca-Acevedo et al. 2015). Pyrethroids are mainly cleaved by esterase-mediated 

hydrolysis, yielding less-toxic compounds (Abernathy and Casida 1973).
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Various works have been published related to insect P450 monooxygenases and their active 

metabolic role in insecticide resistance (Berge et al. 1998, Scott 1999, Feyereisen 2005, Bass 

and Field 2011, David et al. 2013). The contribution of this enzyme family to insecticide 

degradation has been demonstrated in T. infestans from different regions in Argentina, 

Brazil, and Bolivia (Vassena et al. 2000, Picollo et al. 2005, Santo Orihuela et al. 2008, 

Roca-Acevedo et al. 2011, Forlani et al. 2013). When all three populations from Eiti were 

treated with PBO before the bioassays, the resistance to deltamethrin reverted to total 

susceptibility. The synergism effect of PBO reverted the resistance to deltamethrin, 

suggesting that an oxidase metabolic pathway is involved in the pyrethroid resistance 

mechanism of these populations.

The biochemical analysis results on the activity of the cytochrome P450 monooxygenase 

(evaluated by 7-ethoxycoumarin-O-deethylation) showed a highly variable pattern among 

populations not consistent with the resistant profile observed with the bioassays. This could 

reflect the specificity of each isoenzyme of this large family involved in the resistance 

mechanism to each particular insecticide type (Schama et al. 2016). Therefore, the specific 

enzyme family we evaluated by this test was not likely responsible for the resistance 

observed. In this regard, Sawicki et al. (1986) reported the possibility that even slight 

structural changes resulting in steric effects in pyrethroid molecules can greatly influence the 

final susceptibility. Many authors have demonstrated that the P450 monooxygenases are 

involved in the metabolism of virtually all insecticides, leading to activation of the molecule 

in the case of organophosphorus insecticides, or more generally to detoxification 

(Hemingway and Ranson 2000). As new research is being developed in this topic, the 

complete sequencing of this enzymatic group is being characterized, which would allow for 

the development of new markers to detect individual enzymes involved in the resistance 

mechanism in each population (Grosso et al. 2016; Ibrahim et al. 2015).

Recently, Fabro et al. (2012) and Capriotti et al. (2014) demonstrated the presence of two 

point mutations in the sodium channel associated with pyrethroid knockdown resistance 

(kdr) in T. infestans populations in Chaco and Salta provinces of Argentina. However, the 

populations evaluated in this study showed no evidence of altered target site (kdr) and thus 

that is not likely to be the mechanism related to the observed pyrethroid resistance profile. 

This result is not surprising, as the presence of the named kdr mutations are associated to 

much higher levels of resistance to deltamethrin than the ones detected in these populations. 

(Fabro et al. 2012, Capriotti et al. 2014).

Final Remarks

The toxicological analysis by bioassays demonstrated that the triatomine populations studied 

in three separate communities in the Santa Cruz Department showed decreased susceptibility 

to pyrethroid insecticide.

The resistance pattern detected in this sample indicates the applications of α-cypermethrin 

in this area have not yet caused significant selective pressure of P450 monooxygenases to 

this particular insecticide. Therefore, in these populations, the observed level of 

susceptibility to α-cypermethrin (the insecticide used by the Bolivian vector control 

program) falls within the acceptable range to continue the use of this insecticide for vector 
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control. However, because all populations showed critical RR50s values, indicating reduced 

susceptibility to both deltamethrin and α-cypermethrin, it is expected that continuous and 

massive spraying with the same type of insecticide might select specific mechanisms toward 

α-cypermethrin resistance. Therefore, these populations have the potential to develop 

resistance to pyrethroids, which would lead to higher risk of vector control failure. The 

current recommendations include close entomological monitoring in the area, including 

periodical assessment of resistance level to pyrethroid and sustained well-conducted 

intervention activities.
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Fig. 1. 
Collection sites (houses) for bug samples in rural communities of Eiti Health Sector, 

Municipality of Gutierrez, Santa Cruz Department, Bolivia. Inset: Geographical location of 

the study area. Imagery credits: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, 

Aerogrid, IGN, IGP, and the GIS User Community. Copyright: © 2012 Esri, DeLorme, 

NAVTEQ.
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Table 2

Enzymatic activities of 7-coumaryl permethrate (7-CP) esterases and P450 monooxygenases

Population 7-CP esterases N P450 monooxygenases N

El Cruce 18.63 (± 1.11)b 31 138.17 (± 17.29)a 32

Guasuanti 18.51 (± 0.84)b 32 352.20 (± 56.53)c 16

Itapicoe 17.91 (± 1.17)b 30 226.22 (± 40.45)b 23

NFS 11.35 (± 0.81)a 43 194.09 (± 15.83)b 40

The activity values are presented as the mean activity (pmol/min) per insect and standard errors (SE). N = number of insects used per assay. The 
different letters (a–c) are significantly different (P < 0.05) [Kruskal–Wallis (KW) and Dunn’s multiple comparison test]. 7-CP KW statistic = 35.71; 
P450KW statistic = 17.59.
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